DC모터의 응답실험과 모델 파라미터 추정

*이현선, 정 슬 충남대학교 메카트로닉스공학부 e-mail: yeahhappyday@naver.com, jungs@cnu.ac.kr

Estimating Worn out DC Motor Parameter by Response Experiment

*HYUN-SEON LEE, Seul Jung Department of Mechatronics Engineering Chungnam National University

Abstract

By measuring the response performance of applied voltage to derive the parameters of the motor, it is possible to design a model-based control of a high performance by using the parameters.

The used motors are D640 DC-geared motor manufactured by DAEWA E/M, the system contains a Bluetooth module to communicate with PC. Motor Driver is NT-M-DCDM2410.

I. 서론

시스템을 제작하고 이에 대한 시뮬레이션을 할 때, 정확한 모델링을 위해서는 시스템에 사용되는 재원에 대하여 상세히 파악할 필요가 있으며 모델기반의 제어기를 설계할 때는 정확한 시스템 파라미터가 필요하다. 대다수의 시스템의 액추에이터로 전동기가 사용되며 그 중에서 DC모터는 BLDC모터에 비해 저렴한 가격으로 현재도 애용되고 있다. 그러나 DC모터는 브러시의 마모, 열에 의한 권선손상, 감자와 같은 여러 가지 요인에 의하여 성능이 저하될 수 있으며 같은 제품의 DC모터라도 그 특성이 다를 수 있다. 모터의

성능은 부품의 교체로 회복할 수 있지만 그럼에도 모 터간의 미세한 차이가 존재하며 항상 최상의 성능을 유지할 수는 없다. 본 논문은 기본적으로 주어지는 정 보와 실험을 통한 통계적 방법과 이론으로 무부하 상 태에서의 모터의 특성을 도출 및 검증한 후 이를 위한 제어기를 설계한다.

그림1. 실험에 사용된 Two-wheel 시스템

Ⅱ. 모터의 정역학 및 응답 측정

2.1 모터의 정역학

모터에 전압을 인가하였을 때, 모터의 거동에 따른 전압과 전류 및 공급전력과 소모전력의 관계식은 식 (1)과 같다.

$$\begin{split} &V_e + V_\tau + V_b = (w \, K_e) + (I_\tau R) + (I_{idle} \, R) \\ &= w K_e) + \left((T + T_{idle}) / K_m \right) R \\ &ut \quad T \, w \\ &W_{in} = I_{total} \, V_s \\ &I_{total} = I_\tau + I_{idle} \end{split} \tag{1}$$

또한 전기자 방정식과 기계 방정식을 이용하여 표현 한 직류전동기 모델의 입출력 방정식은 식 (2)와 같다.

$$\begin{split} \frac{di_a(t)}{dt} &= \frac{1}{L_a} V_s(t) - \frac{R}{L_a} i_a(t) - \frac{1}{L_a} V_e \\ V_e(t) &= K_e \frac{d\theta_m(t)}{dt} = K_e w_m(t) \\ T_m(t) &= K_m i_a(t) \\ T_m(t) - T_L(t) - T_b(t) &= J_m \ddot{\theta}_m(t) + B_m \dot{\theta}_m(t) \end{split} \tag{2}$$

표 1. 파라미터

	전기자 저항	T	운동 마찰력
V_s	공급 전압	K_e	역기전력 상수
L_a	인덕턴스	K_m	토크 상수
J_m	회전자 관성모멘트	V_e	역기전력
B_m	회전자 점성 마찰 계수	V_b	마찰 전압
m	회전자 회전각도	$I_{ au}$	부하 전류
w_m	회전자 각속도	I_{idle}	무부하 전류
T_m	전동기 토크	I_a	전기자 전류
T	부하 토크		

실험에 사용된 모터의 사양서의 파라미터는 표 2와 같다.

표 2. 모터사양

Parameter	Value
$K_e(V.s/rad)$	0.00607
$K_m(N.m/A)$	0.0579
$I_{idle}(\mathbf{A})$	약 0.5
$I_{stall}(\mathbf{A})$	17.6
$T_{stall}({ m kgf})$	10.54

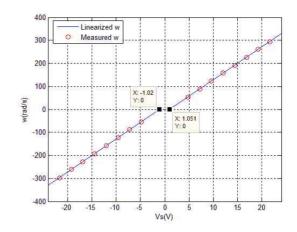


그림2. 인가전압에 따른 모터 응답

무부하 상태에서 인가전압에 따른 모터의 응답을 측정하면 모터마다 회전속도에 차이가 있음은 물론 같은 모터라도 정방향 회전과 역방향 회전의 응답에 미소한 차이가 있음을 알 수 있다. 또한 일정 전압까지는 모터 자체의 마찰력에 의하여 회전하지 못하며 이는 회전중에도 항상 존재한다. 또한 회전하기 전과 회전중의 마찰력이 다르며 정지상태에서의 마찰력이 더 높다. 이것은 동역학에서 흔히 볼 수 있는 정지마찰력과운동마찰력의 관계로 볼 수 있다.

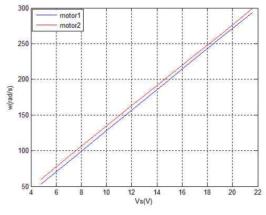


그림3. 다른 두 모터의 응답

실험에 사용한 두 모터간의 속도오차는 24V에서 2% 정도였으며 무부하 회전속도는 최대 3050RPM정도로 사양서의 3500RPM의 약 87%에 해당한다.

II. 파라미터 추정

3.1 K_e , w_b

회전중인 모터의 거동은 1차식을 그리기 때문에

bias를 마찰력에 의한 감쇠속도로 볼 수 있으며 인가 전압이나 모터의 회전속도와는 무관하다. 이를 근거로 역기전력과 마찰에 대한 bias전압을 구할 수 있다.

무부하 상태에서 전압과 시간에 대한 모터의 응답은 식 (3)과 같다.

$$(t) = \begin{cases} V_s - V_b K_m & 1 - e^{-\frac{K_m K_e + B_m R}{R}} \\ M_e + B_m R & 1 - e^{-\frac{K_m K_e + B_m R}{R}} \end{cases}, V_s \ge V_b$$
 (3)

 B_m 이 매우 작기 때문에 무시하여 w_m 을 근사시켰을 때, 정상상태에서의 모터의 회전속도와 역기전력 상수는 식(4)와 같다.

$$w_s = \frac{\left(V_s - V_b\right)}{K_e} = \left(1/K_e\right)V_s - w_b, V_s \ge V_b$$

$$K_e = \left(V_s - V_b\right)/w_s$$
(4)

정상상태에서는 운동마찰만을 고려하여도 충분하며 실험결과 얻어진 모터1의 수식은 다음과 같다.

$$14.323 V_s - 15.152 \cdots$$
 (forward) $14.418 V_s - 14.710 \cdots$ (backward) (5)

$3.2 K_{m}, R$

노후된 모터는 파라미터의 변화와 함께 토크성능이 변화하나 저항 R과 토크상수 K_m 사이의 관계성(비율) 은 크게 변하지 않는다고 가정하여 무부하 성능 테스 트에서는 K_m 을 그대로 사용하기로 한다.

제조사에서 제공하는 인가전압 24V에서의 기동토크 와 무부하 회전속도는 표 3과 같다.

표 3. V_s =24V 에서의 기동토크와 무부하 회전속도

Stall torque	NL-Speed	
10.54(kg c.m)	3500(RPM)	
1.03292(Nm)	366.5191(rad/s)	

기동토크와 무부하 회전속도를 통해서 식(6)의 Slope 를 구할 수 있다.

$$Slope = \frac{w_{NL}}{T_{stall}} = \frac{R}{K_m K_e}$$
 (6)

사용된 모터의 Slope는 354.84이며 이를 통해 R을 구할 수 있다.

표 4. 회전방향에 따른 상수

	Forward	Backward	Median
$V_b(\nabla)$	1.057908	1.020212	1.03899762
$w_b(\mathrm{rad/s})$	15.15238	14.70952	14.9309524
$K_e(V.s/rad)$	0.069818	0.069357	0.06958683

표 5. 각 상수에 따른 예측속도 w_e 와 실제속도 w_f, w_b

$V_s({\sf V})$	$w_e \\ \text{(rad/s)}$	w_f (rad/s)	e_f %	$w_e \\ \text{(rad/s)}$	w_b (rad/s)	e_b %
4.8	53.66	53.6	-0.12	54.56	54.8	0.42
7.20	88.07	87.6	-0.54	89.20	88.8	-0.45
9.60	122.48	122.4	-0.07	123.84	123.6	-0.19
12.01	156.89	157.2	0.19	158.48	158.4	-0.05
14.41	191.30	191.6	0.15	193.11	194	0.45
16.81	225.71	226.4	0.30	227.75	228	0.10
19.21	260.12	260.4	0.10	262.39	261.6	-0.30

$V_s(V)$	w_e (rad/s)	e_f %	e_b %
4.8	54.11	-0.96	1.24
7.20	88.64	-1.18	0.17
9.60	123.16	-0.62	0.3
12.01	157.68	-0.31	0.44
14.41	192.21	-0.31	0.92
16.81	226.73	-0.14	0.55
19.21	261.25	-0.33	0.13

$3.2 J_{m}$

회전자 관성모멘트는 모터의 회전을 방해하는 요소로 작용하며 모터가 정상상태까지 도달하는 시간과 관련되는 중요한 파라미터이다.

$$\begin{split} w_m(t) &= \frac{V_m}{K_e}(1-e^{-at}), t \geq 0 \\ a &= \frac{K_m K_e}{RJ_m} \end{split} \tag{7}$$

식 (7)을 통해 다양한 인가전압에 따른 모터의 시간 응답을 확인하고 가장 오차가 적은 J_m 을 구할 수 있다. 모터의 회전자 관성모멘트는 바퀴나 진자 등 부착되는 시스템에 따라 변할 수 있다. 무게 약 270g, 직경 120mm의 바퀴를 부착하여 반복 실험하였다.

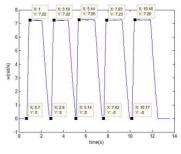


그림4. 속도응답 반복실험

표 6. 반복실험에 따른

$V_s(V)$ 7.2		14.4	21.6	
$kg m^2$)	6.26e-005	7.32e-005	6.77e-005	

 J_m =6.87543e-005 $(kg m^2)$

 $\sigma = 5.8873e - 006(kq m^2), (8\%)$

Ⅳ. 실험 및 정확도 검증

계산된 J_m 을 적용하여 시뮬레이션한 속도응답과 실제 응답간의 비교그래프는 다음과 같다.

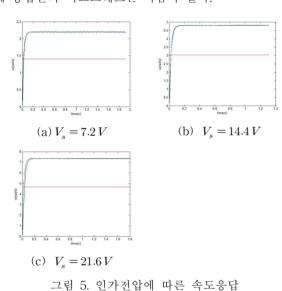


표 7. 인가전압에 따른 정상상태 응답 오차율

$V_s(V)$	7.2	14.4	21.6
$error_w(\%)$	0.366	0.57	0.04

표 8. 인가전압에 따른 시정수

$V_s(V)$	7.2	14.4	21.6
au	0.03	0.025	0.04
$ au_s$	0.025	0.025	0.025

3.3 위치추정 실험

기어비 40으로 장착된 바퀴를 5 rad/s로 회전하기 위하여 계산된 전압 약 15 V를 인가하고 회전각을 정회전으로 50초간 측정하였다. 동시에 정회전과 Median에 맞춘 상수 K_e, V_b 대한 시뮬레이션도 함께하였다. 50초간 측정, 예측한 회전각은 다음과 같다.

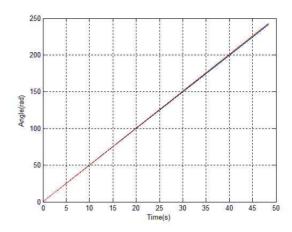


그림5. 시간에 따른 회전각의 측정과 예측

표9. 상수타입에 따른 예측 회전각과 오차 실제 회전각(rad): 241.45

	회전각	오차	오차	오차율%
	(rad)	(rad)	(deg)	_ 조사활/0
Forward	242.23	0.7875	45	0.326%
Median	243.37	1.9213	110	0.796%

정회전에 맞춘 파라미터를 적용하였을 때 엔코터를 통해 측정한 모터의 회전속도는 4.94~4.98rad/s로 목 표하는 값에 근접해 있음을 확인할 수 있었다.

Ⅳ. 결론 및 향후 연구 방향

본 논문은 무부하 상태라는 제한된 환경에서 노후에 의하여 변화한 DC모터의 파라미터를 이론과 실험, 통계에 근거하여 재추정 하였으며 이의 정확도를 검증하였다. K_e 는 실험을 통하여 상수임을 증명하였으며 J_m 은 축이나 바퀴의 기하학적인 요소에서 오는 상수이다. 부하상태에서의 동기제어나 운동예측을 위해서는 K_m 과 R의 정확한 측정이 필요하며 이렇게 구해진 파라미터가 모델기반의 제어기의 성능을 크게 향상시킬수 있을 것으로 기대된다.

참고문헌

- [1] http://www.micromo.com/
- [2] http://www.precisionmicrodrives.com
- [3] Theodore P. Pavlic, "Rotary Electrodynamics of a DC Motor"
- [4] 양광용, KITECH, DC Motor 제어기 모델링과 시 뮬레이션